Some properties of continuous linear operators in topological vector PN-spaces
Authors
Abstract:
The notion of a probabilistic metric space corresponds to thesituations when we do not know exactly the distance. Probabilistic Metric space was introduced by Karl Menger. Alsina, Schweizer and Sklar gave a general definition of probabilistic normed space based on the definition of Menger [1]. In this note we study the PN spaces which are topological vector spaces and the open mapping and closed graph Theorems in this spaces are proved.
similar resources
some properties of continuous linear operators in topological vector pn-spaces
the notion of a probabilistic metric space corresponds to thesituations when we do not know exactly the distance. probabilistic metric space was introduced by karl menger. alsina, schweizer and sklar gave a general definition of probabilistic normed space based on the definition of menger [1]. in this note we study the pn spaces which are topological vector spaces and the open mapping an...
full textsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولBoundedness of linear order-homomorphisms in $L$-topological vector spaces
A new definition of boundedness of linear order-homomorphisms (LOH)in $L$-topological vector spaces is proposed. The new definition iscompared with the previous one given by Fang [The continuity offuzzy linear order-homomorphism, J. Fuzzy Math. 5 (4) (1997)829$-$838]. In addition, the relationship between boundedness andcontinuity of LOHs is discussed. Finally, a new uniform boundednessprincipl...
full texts-Topological vector spaces
In this paper, we have dened and studied a generalized form of topological vector spaces called s-topological vector spaces. s-topological vector spaces are dened by using semi-open sets and semi-continuity in the sense of Levine. Along with other results, it is proved that every s-topological vector space is generalized homogeneous space. Every open subspace of an s-topological vector space is...
full textQuasi-compact Operators in Topological Linear Spaces
The classical theorems of Riesz [l] on compact operators have been extended by Leray [2] and Williamson [3] to the context of topological linear spaces. Ringrose [4] has shown that if an operator on such a space is compact, the square of its adjoint is also compact, where the topology on the dual space is that of uniform convergence on bounded sets. Thus if an operator is continuous and some po...
full textSome Properties of Continuous $K$-frames in Hilbert Spaces
The theory of continuous frames in Hilbert spaces is extended, by using the concepts of measure spaces, in order to get the results of a new application of operator theory. The $K$-frames were introduced by G$breve{mbox{a}}$vruta (2012) for Hilbert spaces to study atomic systems with respect to a bounded linear operator. Due to the structure of $K$-frames, there are many differences between...
full textMy Resources
Journal title
volume 1 issue 1
pages 58- 64
publication date 2010-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023